STRENGTH OPTIMIZATION OF THE SHAPE OF A VISCOELASTIC INHOMOGENEOUSLY-AGING REINFORCED ROD*

L.V. GENKIN and V.B. KOLMANOVSKII

The problem of selecting the shape of a minimal volume rod for which normal stresses in the reinforcements and the main material do not exceed given values is examined. Relationships are established that govern the optimal shape. The dependence of the optimal shape on the magnitude of the bending moment and functions characterizing the inhomogeneity of the aging is studied. Results are presented for numerical computations. The research continues the investigations in / / - 3/.

1. Formulation of the problem. A viscoelastic reinforced rod of length is in the undefomed state along the x-axis. A bending moment $M(x)$ acts on the rod in the longitudinal plane, which is its plane of symmetry. We introduce a Cartesian coordinate system y, z, in the rod cross-section, whose origin coincides with the center of gravity of this section. We take the neutral axis as the y axis, and the z axis perpendicular to y and in the plane of the transverse section (Fig.1). Let the subscripts a and 0 refer to the reinforcements and the main material. Thus $\sigma_{a}{ }^{i}(t, x)$ is the normal stress in the i-th bar of the armature in the section $x \in[0, I]$ at the time $t \geqslant 0 ; i=1,2, \ldots n$ (n is the number of bars in the reinforcement. Analogously, the normal stresses in the main material are denoted by

Fig. 1 $\sigma_{0}(t, x, z)$, where z is the distance to the neutral axis. The cross-sectional area $S(x)$ should be selected such that the volume of the rod

$$
V=\int_{0}^{1} S(x) d x
$$

would be minimal and constraints on the nommal stresses would be satisfied (the numbers α_{a} and α_{0} are given)

$$
\begin{align*}
& \left|\sigma_{a}^{i}(t, x)\right| \leqslant \alpha_{a},\left|\sigma_{0}(t, x, z)\right| \leqslant \alpha_{0} \tag{1.1}\\
& 0 \leqslant x \leqslant l ; \quad 0 \leqslant t ; \quad i=1,2, \ldots, n
\end{align*}
$$

The reinforcement location is given and is fixed, where the projections of the reinforcement bars on the $y z$ plane are enclosed in the rectangle $|y| \leqslant y_{a},|z| \leqslant z_{a}$. The quantities y_{a} and z_{a} are given and identical for all sections.
Let us derive formulas for the normal stresses under the following assumptions: The center of gravity of the reinforcement agrees with the center of gravity of the main material in each section of the rod; the rod transverse sections remain planar during deformation and the law of plane sections is valid; the deformations $\varepsilon_{a}{ }^{i}(t, x)$ and the stresses $\sigma_{a}{ }^{i}(t, x)$ in the reinforcement are related by Hooke's law.

$$
\begin{equation*}
\sigma_{a}^{i}(t, x)=E_{a} \varepsilon_{a}^{*}(t, x) \tag{1,2}
\end{equation*}
$$

The main material is assumed viscoelastic and inhomogeneously aging, i.e., /i/

$$
\begin{align*}
& \varepsilon_{0}(t, x, z)=\sigma_{0}(t, x, z) E_{0}^{-1}-\int_{0}^{t} \sigma_{0}(\tau, x, z) \frac{\partial}{\partial \tau} C(t+\rho(x), \tau+\rho(x)) d \tau \tag{1.3}\\
& C(t, \tau)=\varphi(\tau)\left[1-e^{-\gamma(-\tau)}\right], \gamma>0, t \geq \tau
\end{align*}
$$

Here E_{a} and E_{0} in (1.2) and (1.3) are constant elastic moduli, the piecewise continuous bounded function $\rho(x)$ is the age of an element with the coordinate x relative to an elementwith the coordinate $x=0 ; C(t, \tau)$ is a measure of the creep, the function of the aging $\varphi(\tau)>0$ is continuous, decreases monotonically, and tends to the measure of the creep C_{0} of the main $\xrightarrow{\text { material in its old age as } \tau \rightarrow \infty \text {. }}$

[^0]In conformity with the law of plane sections and (1.2), we have

$$
\begin{equation*}
\varepsilon_{0}(t, x, z)=\omega(t, x) z, \sigma_{a}^{i}(t, x)=E_{a} \omega(t, x) z_{i} \tag{1.4}
\end{equation*}
$$

(the function $\omega(t, x)$ is the curvature of the rod cambered axis, and z_{i} is the distancebetween the y axis and the i th bar of the reinforcement in the section x).

Let $R(E, t, \tau)$ be the resolvent of the kernel ($\partial / \partial \tau) C(t, \tau)$ with the parameter E. Then there results from (1.3) and (1.4) that

$$
\begin{align*}
& \sigma_{0}(t, x, z)=z b(t, x) \tag{1.5}\\
& b(t, x)=E_{0}\left(\omega(t, x)+E_{0} \int_{0}^{t} \omega(\tau, x) R\left(E_{0}, \tau+\rho(x), t+\rho(x)\right) d \tau\right)
\end{align*}
$$

Let us form the equilibrium equation

$$
\sum_{i=1}^{n} S_{a}^{i} \sigma_{a}^{i}(t, x) z_{i}+\int_{S_{0}} \sigma_{0}(t, x, z) z h(z) d z=M(x)
$$

Here S_{a}^{i} is the cross-sectional area of the i-th bar of the reinforcement, S_{0} is the transverse section of the main material, and $h(z)$ is the width of a cross-sectional element. We replace σ_{a}^{i} and σ_{0} by (1.4) and (1.5) in the equilibrium equations. Using I_{a} and I_{0} for the corresponding moments of inertia of the sections with respect to the neutral axis, we obtain that

$$
\begin{aligned}
& \omega(t, x)+(1-\beta) E_{0} \int_{0}^{t} \omega(\tau, x) R\left(E_{0}, t+\rho(x), \tau+\rho(x)\right) d \tau= \\
& \quad \frac{M(x) \beta}{I_{a} E_{a}}, \quad I_{a}=\sum_{i=1}^{n} S_{a^{i} z_{i}^{2}}{ }^{2}, \quad I_{0}=\int_{S_{0}} z^{2} h(z) d z \\
& \beta=I_{a} E_{a}\left(I_{0} E_{0}+I_{a} E_{a}\right)^{-1}, \quad 0 \leqslant \beta \leqslant 1
\end{aligned}
$$

Solving the last integral equation for the curvature ω we conclude on the basis of the second relationship in (1.4) that the normal stress in the reinforcement is given by the formula

$$
\begin{equation*}
\sigma_{a}^{z}(t, x)=\frac{M(x) \beta}{I_{a}} z_{t}\left(1-(1-\beta) E_{0} \times \int_{0}^{t} R\left(E_{0} \beta, t+\rho(x), \tau+\rho(x)\right) d \tau\right) \tag{1.6}
\end{equation*}
$$

(the fact is used that the resolvent of the kernel $R(E, t, \tau)$ with the parameter ($1-\beta$) E equals $R(E \beta, t, \tau)$ (see $/ 4 /$, for instance)). Hence it is seen that the greatest normal stress will be in that bar of the reinforcement for which the quantity $\left|z_{i}\right|$ is maximal, i.e., equals z_{a}. The representation

$$
R(E, t, \tau)=\gamma \frac{\partial}{\partial \tau}\left[\varphi(\tau) e^{\eta(\tau)} \int_{\tau}^{t} e^{-\eta(s)} d s\right], \quad \eta(s)=\gamma s+\gamma E \int_{0}^{s} \varphi\left(s_{1}\right) d s_{1}
$$

is known from /1/. Consequently
$\int_{0}^{t} R\left(E_{0} \beta, t \mid \rho(x), \tau+\rho(x)\right) d \tau=J_{0}(t, \beta)=-\gamma \varphi(\rho(x)) \int_{0}^{t} \exp \left[-\gamma s-E_{0} \beta \gamma \int_{0}^{s} \varphi\left(s_{1}+\rho(x)\right) d s_{1}\right] \mid d s$
It is clear that the function $J_{0}(t, \beta)$ is negative and decreases monotonically in t.
Hence, the relationship (1.6) permits rewriting the first of the inequalities (1.1) in the following equivalent form

$$
\begin{align*}
& F(\beta, \rho) \leqslant \frac{\alpha_{a} I_{a}}{M(x) z_{a}}=\bar{\alpha}_{a} \tag{1.8}\\
& F(\beta, \rho)=\beta+\beta(1-\beta) J(\beta, \rho), J(\beta, \rho)=-E_{0} \lim _{t \rightarrow \infty} J_{0}(t, \beta)
\end{align*}
$$

Let us manipulate the second of the constraints (1.1) in an analogous way. We first find an expression for the function $b(t, x)$ defined by (1.5). Substituting the functions (1.5) and (1.6) in the equilibrium equation and using the definition of the quantity β, we obtain

$$
\begin{equation*}
b(t, x)=M(x) E_{0} E_{a}^{-1} I_{a}^{-1} \beta\left[1+\beta E_{0} J_{0}(t, \beta)\right] \tag{1.9}
\end{equation*}
$$

Because of (1.5), (1.9), (1.7) and the function $J_{0}(t, \beta)$ that decreases monotonically in t, the second inequality in (1.1) is equivalent to the following ($r(x)$ is the distance from the y axis to the most remote point of the main material in the section x)

$$
\begin{equation*}
\beta r(x) \leqslant \bar{\alpha}_{0}, \quad \bar{\alpha}_{0}=E_{a} I_{a}\left(M E_{0}\right)^{-1} \alpha_{0} \tag{1.10}
\end{equation*}
$$

Thus, the problem formulated reduces to determining that shape of the cross section $S_{0}(x)$ for which the volume V is minimal and the constraints (1.8) and (1.10) are satisfied.
2. Optimal shape of the cross-section. Let us assume that the shape of the section is symmetric relative to the axes y and z, and its boundary is given in the first quadrant by a single-valued positive function $f(y)$, i.e. $z=f(y)$ for $z \geqslant 0, y \geqslant 0$. Let β_{a} denote the least root of the equation

$$
\begin{equation*}
F(\beta, \rho)=\bar{\alpha}_{a} ; \quad \bar{\alpha}_{a}=\alpha_{a} I_{a}\left[M(x) z_{a}\right]^{-1}, \quad 0 \leqslant \beta \leqslant 1 \tag{2.1}
\end{equation*}
$$

If (2.1) has no roots for $0 \leqslant \beta \leqslant 1$, then we put $\beta_{a}=1$. The inequality (1.8) is equivalent to the following

$$
\begin{equation*}
\beta \leqslant \beta_{a} \tag{2.2}
\end{equation*}
$$

It is seen from the definition of β and from (1.10) and (2.2) that the initial problem reduces to determining the function $f(y)$ (each for each section x) possessing properties noted, for which

$$
\begin{align*}
& S_{0}(x) \rightarrow \min , I_{0}(x) \geqslant C_{1} \\
& S_{0}(x)=4 \int_{0}^{u_{0}} f(y) d y, \quad I_{0}(x)=\frac{4}{3} \int_{0}^{u_{0}} f^{3}(y) d y \tag{2.3}\\
& C_{1}=\frac{I_{a} E_{a}}{E_{0}}\left(\max \left(\frac{1}{\beta_{a}}, \frac{r(x)}{\bar{\alpha}_{0}}\right)-1\right)
\end{align*}
$$

In a number of cases the optimal shape of the section is a rectangle. For instance, let a beam not be reinforced and let there be no lower bounds on the shape of the section. We assume that the function $f_{0}(y), 0 \leqslant y \leqslant y_{0}$ solves the problem (2.3) in a certain section x, and we consider in addition, a rectangle with sides parallel to the y, z axes which is symmetric relative to these axes. The altitude of this rectangle is $2 r(x)$ and the width is $2 l$, where l is determined from the condition $l=3 I_{0}(x)\left(4 r^{3}(x)\right)^{-1}$. The moments of intertia relative to the neutral axis of the rectangle and the figure determined by the function $f_{0}(y)$ here are equal. Because of the condition $f_{0}(y) \leqslant r(x)$, the area of the rectangle $4 r(x) l$ does not exceed $S_{0}(x)$ defined by the function $f_{0}(y)$. Consequently, in the case considered the optimal shape of the section is a rectangle. Even in the general case we shall see the optimal shape of the section among rectangles. It is here natural to consider that the main material in each section of the reinforcement is enclosed by the main material, i.e.,

$$
\begin{equation*}
z \geqslant z_{a}, y \geqslant y_{a} \tag{2.4}
\end{equation*}
$$

This means that the problem (2.3) reduces to minimizing the product $y z$ under the constraints (2.4) and the condition $4 y z^{3} \geqslant 3 C_{1}$, where C_{1} is defined in (2.3). We denote the altitude of the optimal rectangle by $2 z_{0}$, and the width by $2 y_{0}$. It is convenient to introduce the new variable $s=y z$. The formulated problem takes the following form in the variables s, z

$$
\begin{align*}
& s \rightarrow \min , s \geqslant \max \left[s_{1}(z), s_{2}(z), z y_{a}\right], z \geqslant z_{a} \tag{2.5}\\
& s_{1}(z)=\frac{3}{4} \frac{E_{a}}{E_{0}} I_{a}\left(z \bar{\alpha}_{0}^{-1}-1\right) z^{-2} \\
& s_{2}(z)=\frac{3}{4} \frac{E_{a}}{E_{0}} I_{a}\left(\beta_{a}^{-1}-1\right) z^{-2}
\end{align*}
$$

Let us note that the optimal value $s_{0}=y_{0} z_{0}$ also satisfies the equation

$$
\begin{equation*}
s_{0}=\min _{z \geqslant z_{a}} \max \left[s_{1}(z), s_{2}(z), z y_{a}\right] \tag{2.6}
\end{equation*}
$$

Let us introduce the numbers h_{1}, \ldots, h_{5} whose meaning is clear from Fig. 2 . The root h_{1} is here the intersection of the curves s_{1} and s_{2}, which always exists and is unique. The unique root h_{2} also always exists. It can be verified that

$$
\begin{align*}
& h_{1}=\bar{\alpha}_{0} \beta_{a}^{-1}, \quad h_{2}=\left[\frac{3}{4} \frac{a}{E_{0} y_{a}} I_{a}\left(\beta_{a}^{-1}-1\right)\right]^{1 / 4} \tag{2.7}\\
& h_{5}=2 \bar{\alpha}_{0}=2 \alpha_{0} E_{a} I_{a}\left(M E_{0}\right)^{-1}
\end{align*}
$$

Finally, h_{3} and h_{4} are two positive roots of the cubic equation $s_{1}(z)=y_{a} z$; they may coincide, and can also not exist. Investigation of (2.5) and (2.6) shows that the following variants axe possible depending on the parameters of the problem:

1) Let either $h_{2} \leqslant h_{3} \leqslant z_{a} \leqslant h_{4}$ or $h_{3} \leqslant h_{2} \leqslant h_{4}$ and $h_{1} \leqslant z_{a}$. Then

$$
\begin{aligned}
& z_{0}=z_{a}, y_{0}=s_{1}\left(z_{a}\right) / z_{a} \text { as } s_{1}\left(z_{a}\right) \leqslant y_{a} h_{4} \\
& z_{0}=y_{u_{4}}, y_{0}=y_{a} \text { as } s_{1}\left(z_{a}\right)>y_{a} h_{4}
\end{aligned}
$$

2) Let $h_{3} \leqslant h_{2} \leqslant h_{4}$ and $h_{1} \geqslant z_{a}$. Then

$$
\begin{aligned}
& z_{0}=h_{1}, y_{0}=s_{2}\left(h_{1}\right) / h_{1} \quad \text { as } s_{2}\left(h_{1}\right) \leqslant y_{0} h_{4} \\
& z_{0}=h_{4}, y_{0}=y_{a} \text { as } s_{2}\left(h_{1}\right)>y_{0} h_{4}
\end{aligned}
$$

In all the remaining cases (for instance, if $h_{2}<h_{3}$ and $z_{0}<h_{3}$, if $h_{2}>h_{4}$, etc.) there will be

$$
z_{0}=\max \left(z_{a}, h_{2}\right), y_{0}=y_{a}
$$

Therefore, the optimal shape of the main material is a rectangle which can have either the minimal possible width or minimal altitude depending on the parameters of the problem.

3. Optimal section shape for large values of the moment $M(x)$. Let us find formulas for the numbers h_{i} as $M \rightarrow \infty$. Because of (2.7), we have

$$
\begin{equation*}
h_{5} \rightarrow 0 \quad \text { as } \quad M \rightarrow \infty \tag{3.1}
\end{equation*}
$$

Let us study the behavior of h_{1}. To do this, because of (2.7) it is sufficient to study the behavior of β_{a} as $M \rightarrow \infty$. The number β_{a}. is defined as the root of (2.1) in which the quantity $\bar{\alpha}_{a} \rightarrow 0$ as $M \rightarrow \infty$. This means that by using the Lagrange inversion theorem (/5/, p.507), we obtain

$$
\begin{aligned}
& \beta_{a}=\sum_{j=1}^{\infty} \gamma_{j} \bar{\alpha}_{a}^{j} \quad \gamma_{1}=[1+J(0, \rho)]^{-1}=\left[1+E_{0} \varphi(\rho(x)]^{-1}>0\right. \\
& \gamma_{j}=\left.\frac{1}{\eta!} \frac{d^{j-1}}{d \beta^{j-1}}\left[\frac{1}{1+(1-\beta) J(\beta, \rho)}\right]^{j}\right|_{\beta \Rightarrow}
\end{aligned}
$$

It hence follows that

$$
\frac{1}{\gamma_{\gamma} \bar{\alpha}_{a}}-\frac{1}{\beta_{a}}=\frac{1}{\gamma_{k}}\left[\sum_{j=1}^{\infty} \gamma_{j+1} \bar{\alpha}_{\alpha}^{j}\right]\left[\sum_{j=1}^{\infty} \gamma_{j} \bar{\alpha}_{a}^{j}\right]^{-1}
$$

Convergence of the sexies in the right side means that

$$
\frac{1}{\beta_{a}}=\frac{1}{\gamma_{a} \bar{\alpha}_{\alpha}}+O(1)=\frac{1+E_{a} \varphi(p(\alpha))}{\alpha_{a} I_{a}} z_{a} M+O(1), \quad M \rightarrow \infty
$$

There results hence and from (2.7) and (1.10) that

$$
\begin{align*}
& h_{1} \sim \frac{\alpha_{0} E_{a}}{\alpha_{a} E_{0}}\left[1+E_{0 \varphi}(\rho(x))\right], \quad z_{a}, \quad M \rightarrow \infty \tag{3.2}\\
& h_{2} \sim\left[\frac{3 E_{a} I_{a}}{4 E_{0} y_{a}}\left(\frac{1+E_{0} \varphi(\rho(x))}{\alpha_{a} I_{a}}\right) M\right]^{1 / 4}, \quad M \rightarrow \infty
\end{align*}
$$

Finally, for sufficiently large M two positive roots h_{s} and h_{4} exist for the cubic equation $s_{1}(z)=y_{a} z$. The greatest of these h_{4} satisfies the following relationship because of the Cardano formula

$$
\begin{equation*}
h_{4} \sim \frac{z_{a}}{3}\left[\frac{3 E_{0}}{4 y_{a} z_{a}^{2} E_{a} \alpha_{0}} M\right]^{1 / 2}, \quad M \rightarrow \infty \tag{3.3}
\end{equation*}
$$

The relationships (3.2), (3.3) and (2.7) permit setting up the optimal section shape for sufficiently large values of the moment M. Let us present it. Because of (3.1) and (3.2), for sufficiently large M we will have

$$
\begin{equation*}
h_{5}<h_{1}<h_{2} \tag{3.4}
\end{equation*}
$$

Lel us introduce the function

$$
s_{3}(z)=\max \left(s_{1}(z), s_{2}(z)\right)=\left\{\begin{array}{l}
s_{2}(z), z \leqslant h_{1} \\
s_{1}(z), z \geqslant h_{1}
\end{array}\right.
$$

We recall that $s_{2}(z)$ decreases monotonically, while $s_{1}(z)$ decreases monotonically for $z \geqslant h_{5}$. Because of (3.4), the function $s_{3}(z)$ therefore also decreases monotonically. On the basis of (2.6) we consequently conclude that the optimal value is $s_{0}=\max \left(y_{a} h_{2}, y_{a} h_{4}\right)$. However, $h_{2} \leqslant h_{4}$ (in the opposite case, there would be $h_{1}>h_{2}$ because of the decrease in the function $s_{2}(z)$, which contradicts (3.4)). Hence, for sufficiently large M the optimal value is $s_{0}=h_{4} y_{0}$. This means that for large M

$$
\begin{equation*}
z_{0}=h_{4}, y_{0}=y_{a} \tag{3.5}
\end{equation*}
$$

The dependence of the optimal altitude z_{0} on the moment M is here given by (3.3). IL is seen from the relationship (3.5) that for sufficiently large moments M the optimal shape is independent of the material age. However, that critical value of the moment M_{0}, starting with which the optimal section shape is given by (3.5), is already dependent on the material age, where M_{0} diminishes as the age increases.

A graph of the dependence of M_{0} on p is constructed numerically in Fig. 3 for an aging function of the form

$$
\begin{equation*}
\varphi(\rho)=a_{0} /(\gamma \rho)+c_{0} \tag{3.6}
\end{equation*}
$$

for the following values of the parameters $I_{a}=5.2 \mathrm{~m}^{4}, z_{a}=2 \mathrm{~m}, y_{0}=2 \mathrm{~m}, c_{0}=1.0 \cdot 10^{-4} \mathrm{MPa}^{-1}$, $a_{0}=1.42 \cdot 10^{-5} \mathrm{MPa}, \gamma=0.03$ days ${ }^{-1}, \alpha_{a}=1.6 \cdot 10^{7} \mathrm{~N} / \mathrm{m}^{2}, \alpha_{0}=1.5 \cdot 10^{6} \mathrm{~N} / \mathrm{m}^{2}, E_{a}=1.96 \cdot 10^{5} \mathrm{HPa}, E_{0}=2.54 \cdot 10^{4}$ MPa.

The optimal shape of a cantilever reinforced beam loaded by a lumped force at the free end has also been obtained numerically (the solid curves $1,2,3$ correspond to values of ρ equal to 3,5 , and 20 days). The dashed curves $1,2,3$ depict the dependence of the altitude of the optimal section on the age ρ for values $12.10^{7}, 9.10^{7}$, and $6.10^{7} \mathrm{Nm}$ of the moment, respectively.

We note also that

$$
\begin{equation*}
\partial \beta_{a} / \partial \rho \geqslant 0 \tag{3.7}
\end{equation*}
$$

Hence, and from (2.6) there results that the dependence of the optimal transverse section shape on the age $\rho(x)$ will decrease as ρ increases for a fixed value of the moment $M(x)$. Moreover, the area of the optimal section will also decrease as ρ grows.

Let us prove the formula (3.7). If $\bar{\alpha}_{a} \geqslant 1$, then $\beta_{a}=1$, i.e., $\partial \beta_{a} / \partial \rho=0$. This means that for $\bar{\alpha}_{a} \geqslant 1$ the inequality (3.7) is satisfied. Now, let $\bar{\alpha}_{a}<1$. Then $\beta_{a}<1$ and the following inequality is valid

$$
\begin{equation*}
\partial J(\beta, \rho) / \partial \rho<0 \tag{3.8}
\end{equation*}
$$

Indeed, by differentiating and integrating by parts the expression (1.8) for $f(\beta, \rho)$ we obtain

$$
\partial J(\beta, \rho) / \partial \rho=\gamma J(\beta, \rho)\left[\varphi^{\prime}(\rho) / \gamma \varphi(\rho)+\beta E_{0} \varphi(\rho)+1\right]-\gamma E_{0} \varphi(\rho), \varphi^{\prime}=\partial \varphi / \partial \rho
$$

Hence, and from the positivity of the integral in (1.8) it is seen that

$$
\begin{aligned}
& \operatorname{sign} \partial J(\beta, \mathrm{p}) / \partial \rho=\operatorname{sign}\left[\beta+\psi(\rho)-\frac{1}{J(\beta, \rho)}\right] \\
& \psi(\rho)=\frac{1}{E_{0} \varphi(\rho)}\left(1+\frac{\varphi^{\prime}(\rho)}{\gamma \varphi(\rho)}\right)
\end{aligned}
$$

It follows from the properties of the function $\varphi(\rho)$ that $1 / \varphi(\rho)$ and $\varphi^{\prime}(\rho)$ are monotonically increasing functions, while the limit of $\varphi^{\prime}(\rho)$ equals zero as $\rho \rightarrow \infty$. Consequently, $\psi(p)$ is a monotonically increasing function and

$$
\begin{equation*}
\lim _{\nu \rightarrow \infty} \psi(p)=\left\{E_{0} C_{0}\right\}^{-1} \tag{3.10}
\end{equation*}
$$

If $\beta+\varphi(\rho) \leqslant 0$, then (3.8) is satisfied by virtue of (3.9). Now, let $\beta+\psi(\rho)>0$. We rewrite (3.9) in the following equivalent form:

$$
\begin{align*}
& \operatorname{sign} \partial J(\beta, \rho) / \partial \rho=\operatorname{sig\eta })\left(J(\beta, \rho)-J_{1}(\beta, \rho) I\right. \tag{3.11}\\
& J_{1}(\beta, \rho)=(\beta+\Psi(\rho))^{-1}
\end{align*}
$$

Let us fix β. We assume that there exists such an age ρ_{0} that $\left.J\left(\beta, p_{0}\right) \geqslant J_{1} \beta, p_{0}\right)$. We prove that for any $\beta>\rho_{0}$

$$
\begin{equation*}
J(\beta, p)>J_{1}\left(\beta, p_{0}\right) \tag{3.12}
\end{equation*}
$$

Let us assume the opposite. Let ρ_{1} be the first age greater than p_{o} for which $J\left(\beta, \rho_{1}\right) \leqslant J_{1}(\beta$, $\left.\rho_{0}\right)$. We examine the segment $\left[\rho_{0}, \rho_{1}\right]$. Since $J\left(\beta, \rho_{0}\right) \geqslant J\left(\beta_{1}, \rho_{1}\right)$, then because of the differentiability of the function (1.8) with respect to ρ, there exists a $\rho_{2} \in\left(\rho_{0}, \rho_{1}\right)$ such that $\partial J\left(\beta, \rho_{2}\right) /$
$\partial \rho \leqslant 0$. Then on the basis of (3.11) there will be $J\left(\beta, \rho_{2}\right) \leqslant J_{1}\left(\beta, \rho_{2}\right)$. From the properties of $\psi(\rho)$ there results that $f_{1}(\beta, \rho)$ is continuous and decreases monotonically in ρ. Hence, it follows $J\left(\beta, \rho_{2}\right)<J_{1}\left(\beta, \rho_{0}\right)$ from the preceding inequality which contradicts the definition of β_{1} since $\rho_{2}<\rho_{1}$. Therefore, the assumption about the existence of ρ_{1} is false. The relationship (3.12) is proved.

On the basis of $(3,10)$ we have

$$
\lim _{\beta \rightarrow \infty} J_{1}(\beta, \rho)=q, \quad q=\left(\beta+\frac{1}{E_{0} C_{0}}\right)^{-1}
$$

At the same time, from (1.8) there results the inequality

$$
J(\beta, \rho)<\varphi(p) q / C_{0}
$$

$f(p, p)<\varphi(p) q / C_{0}$
This means that for any $\varepsilon>0$ there exists a $\rho_{3}>\rho_{0}$ such that for $\rho>\rho_{s}$ there will be $J(\beta, \rho)<q+\varepsilon$. Setting $\varepsilon=J_{1}\left(\beta, \rho_{0}\right)-q>0$, we obtain

$$
J(\beta, \rho)<q+\left(J_{1}\left(\beta, \rho_{0}\right)-q\right)=J_{1}\left(\beta, \rho_{0}\right), \rho>\rho_{3}
$$

This inequality contradicts (3.12). Hence, the assumption about the existence of p_{0} is false. This means that for all β there will be $J(\beta, \rho)<J_{1}(\beta, \rho)$. Hence, (3.8) follows from (3.11).

Now, let us consider the solution β_{a} of (2.1) as a function of the age, i.e., $\beta_{a}=\beta_{a}(\rho)$. We write the equality

$$
\frac{d}{d \beta} F\left(\beta_{a}(\rho), \rho\right)=\left.\frac{\partial}{\partial \beta} F(\beta, \rho)\right|_{\rho=\beta_{a}(\rho)} \cdot \frac{\partial \beta_{a}^{\prime}(\rho)}{\partial \rho}+\left.\frac{\partial}{\partial \rho} F(\beta, \rho)\right|_{\rho=\beta_{\mathrm{a}}(\rho)}
$$

By the definition of β_{a} we have $F\left(\beta_{a}(\rho), \rho\right)=\bar{a}_{a}$ from (2.1), i.e.,

$$
\frac{d}{d \rho} F\left(\beta_{a}(\rho), \rho\right)=0 ;\left.\quad \frac{\partial}{\partial \beta} F(\beta, \rho)\right|_{\mid \beta \ldots \beta_{a}} \geqslant 0
$$

Taking (1.8) into account, we have $(\partial / \partial \rho) F(\beta, \rho)<0$ because of (3.8). Hence, $\partial \beta_{a}(\rho) / \partial \rho \geqslant$ 0 is necessary to achieve the equality written above. Formula (3.7) is set up. From the preceding there results that $J(\beta, \rho)<J_{1}(\beta, \rho)$ and

$$
\lim _{\beta \rightarrow \infty} J(\beta, \rho)=\lim _{\beta \rightarrow \infty} J_{1}(\beta, \rho)=q
$$

We hence obtain the estimate

$$
q<J(\beta, \rho)<\mid \beta+\psi(\rho)]^{-1}
$$

These estimates are the more exact, the greater the ρ. Estimates for follow from these inequalities and (2.1):

$$
\left.\bar{\alpha}_{a}\left[\frac{1-\bar{\alpha}_{a}}{\psi(\rho)}+1\right]^{-1}<\beta_{a}<\bar{\alpha}_{a}!\left(1-\bar{\alpha}_{a}\right) E_{0} c_{0}+1\right]^{-1}
$$

which are convenient for large ρ as well as for large moments when $\bar{\alpha}_{a}$ is small. For an aging function of the form (3.6) we have from (1.8)

$$
\begin{aligned}
& J(\beta, \rho)=E_{0}\left(a_{0} \mid \rho C_{0}\right) \int_{0}^{\infty} \exp \left[-\gamma s \rho\left(1+\beta_{\mathrm{r}}\right)\right](s+1)^{-\beta_{7}} d s \\
& \beta_{\mathrm{s}}=\beta E_{0} C_{0}
\end{aligned}
$$

The integral in this formula is a degenerate Schlomilch hypergeometric function. In this case the inequality (3.7) can be set up directly by integrating the expression for $J(\beta$, ρ) by parts.

The authors are grateful to N . Kh. Arutiunian for discussing the results obtained.

REFERENCES

1. ARUTIUNIAN N. Kh., Certain problems of creep theory for inhomogeneously aging bodies. Izv. Akad. Nauk SSSR, Mekhan. Tverd. Tela, No.3, (See also, in English, Some Problems in the Theory of Creep, Pergamon Press, Book No. 11507, 1966).
2. ARUTIUNIAN N.Kh. and KOLMANOVSKII V.B., Optimization problem in creep theory for inhomogeneous beams subjected to aging. Prikl. Mekhan., vol.15, No. 10, 1979.
3. ARUTIUNIAN N.Kh. and KOLMANOVSKII V.B., On the stability of nonuniformly aging viscoelastic rods. PMM, Vol.43, No.4, 1979.
4. RABOTNOV Iu.N., Elements of the Hereditary Mechanics of Solids. NAUKA, MOSCOW, 1977.
5. FIKHTENGOL'TS G.M., Differential and Integral Calculus Course, Vol.2, FIZMATGIZ, Moscow, 1959.

[^0]: *Prikl.Matem. Mekhan. ,46,No.4,683-690,1982

