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STRENGTH OPTIMIZATION OF THE SHAPE OF A ~ISCOELASTSC 

INHOMOGENEOUSLY-AGING REINFORCED ROD* 

L.V. GENKIN and V.B. KOLMANOVSKII 

The problem of selecting the shape of a minimal volume rod for which normal Stresses 

in the reinforcements and the main material do not exceed given values is examined. 

Relationships are established that govern the optimal shape. The dependence of the 

optimal shape on the magnitude of the bending moment and functions characterizing 

the inhomogeneity of the aging is studied. Results are presented for numerical com- 

putations. The research continues the investigations in /l-3/. 

1. Formulation of the problem. A viscoelastic reinforced rod of length 1 is in 

the undeformed state along the r-axis. A bending moment M(;~)acts on the rod in the longi- 

tudinal plane, which is its plane of symmetry. We introduce a Cartesian coordinate system 

y, z,in the rod cross-section, whose origin coincides with the center of gravity of this 

section. We take the neutral axis as the y axis, and the z axis perpendicular to y and in 

the plane of the transverse section (Fig.1). Let the subscripts u and 0 refer to the rein- 

forcements and the main material. Thus u,'(t,z) is the normal stress in the i-th bar of the 

armature in the section I 6~ IO, tj at the time t 200: i = l,&....n (n is the number of bars 

in the reinforcement. Analogously, the normal stresses in the main material are denoted by 

(TO(ttz, z), where .z is the distance to the neutral axis. The 

cross-sectional area s(r) should be selected such that 

~~ _ volume of the rod V=~S(r)di the 

I 
jr 

would be minimal and constraints on the normal stresses would 

za be satisfied (the numbers cc, and a, are given) 

I 02 (t, 2) I Q a,, I u0 (t, 5, J) 1 $ a0 (1.1) 

o,<r,<1; O,(t; i=1,2,...,n 

w 
Fig.1 

The reinforcement location is given and is fixed, where 

the projections of the reinforcement bars on the yz plane are 
enclosed in the rectangle 1 Y I<<y,T 12 I< 2,. The quantities 

y, and 2, are given and identical for all sections. 
_ ._ 

Let us derive fomlulas for the normal stresses under the following assumptions:The center 

of gravity of the reinforcement agrees with the center of gravity of the main materialineacll 

section of the rod; the rod transverse sections remain planar during deformation and the law 
of plane sections is valid; the defomlations aoi (t,r) and the stresses ani in the reinforce- 

ment are related by Hooke's law. 

u.,* (t, z) = E.B,’ (t, z) (1.2) 

The main material is assumed viscoelastic and inhomogeneously aging, i.e., /l/ 

* 
RI (t, x,2) =uo (t. I, 2) zq - 

s 
uo (z, 5, 2) &w-p(z)J-fP(Z))d5 (1.3) 

C&z) =9,(r) Ii -e-e"*], ;>o, t> z 

Here E,and Eo in (1.2) and (1.3) are constant elastic moduli, the piecewise continuous 

bounded function p(z)is the age of an element with the coordinate z relative to an elementwith 

the coordinate z = 0; C(t,z) is a measure of the creep, the function of the aging 'p(r)> 0 is 
continuous, decreases monotonically, of the main 
material in its old age as t--too. 

and tends to the measure of the creep C,, 
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In conformity with the law of plane sections and Cl.?), we have 

so (k x7 z) = 0 (k 5) z, u.,i (t, 5) = E,o (t, 5) zi (I.‘& 

(the function o(t,z) is the curvature of the rod cambered axis, and zi is the dlstanccbetween 
the y axis and the i-th bar of the reinforcement in the section z). 

Let R(E,t,t) be the resolvent of the kernel (a/&)C(1,r) with the parameter E. Tii en 
there results from (1.3) and (1.4) that 

uO (t, 5, z) = zb (t. 5) Cl.51 

Let US foml the equilibrium equation 

,$ SaiGi(k 2)zi + 5 oo(t, s,z)zh(z) dz= M(x) 
s. 

Here s,' is the cross-sectional area of the i-th bar of the reinforcement, So is the 

transverse section of the main material, and h(z)is the width of a cross-sectional element. 
We replace e,i and a,by (1.4) and (1.5) in the equilibrium equations. Using 1. and 1, for 

the corresponding moments of inertia of the sections with respect to the neutral axis, we 

obtain that 

Solving the last integral equation for the curvature o we conclude on the basis of the 

second relationship in (1.4) that the normal stress in the reinforcement is given by the 

formula 

C&I (t, z) = y zI (1 - t1 - fl) Eo x i R (Ed, t + p (z), z + p (z)) d*) 
0 

(1.6) 

(the fact is used that the resolvent of the kernel R(E,t,t) with the parameter (I-p)E equals 

R (Efl, t,t) (see /4/, for instance)). Hence it is seen that the greatest normal stress will 

be in that bar of the reinforcement for which the quantity Izi (is maximal, i.e., equals z,. 

The representation 

R(E,t.~)=y~ip(i)e’l(‘)S~(‘)ds] , 
r 

q (s) = YS + YE 5 ‘P (~1) dssl 
0 

is known from /l/. Consequently 

5R(EoB,I+~((1).-r+~(~))d-(=~o(1,B)=-ye(p(1))iexp C--~-_~eyj.P(s~+p(“))ds~]Ids (1.7) 
0 0 0 

It is clear that the function JO(t,p) is negative and decreases monotonically in t. 

Hence, the relationship (1.6) permits rewriting the first of the inequalities (1.1) in the 

following equivalent form 

(1.8) 

Let us manipulate the second of the constraints (1.1) in an analogous way. Wt first find 

an expression for the function b(t.2) defined by (1.5). Substituting the functions (1.5) and 

(1.6) in the equilibrium equation and using the definition of the quantity b, we obtain 

b (t, Z) = M (z) E&a-‘Ia? [f + t&Jo (t, p)l (1.9) 
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Because of (1.51, (l.g), (1.7) and the function Jo(t, p) that decreases monotonically in 

t, the second inequality in (1.1) is equivalent to the following (r(2) is the distance from 

the y axis to the most remote pointofthe main material in the SeCtionz) 

Br (J) < 50, ?i, = E,I, (ME,)-‘a, (1.10) 

Thus, the problem formulated reduces to determining that shape of the cross section s,(z) 

for which the volume V is minimal and the constraints(1.8) and (1.10) are satisfied. 

2. Optimal shape of the cross-section. Let us assume that the shape of the 

section is symmetric relative to the axes y and Z , and its boundary is given in the first 

quadrant by a single-valued positive function f(y) , i.e. z =f(y) for ~20, y 20. Let Pa 

denote the least root of the equation 

F 0% P) = %a; a, = aJa [:\I (I) z,P, O<P<f (2.1) 

If (2.1) has no roots for 0 <fi <I, then we put pa = 1. The inequality (1.8) is equiv- 

alent to the following 

B<BII (2.2) 

It is seen from the definition of fi and from (1.10) and (2.2) that the initial problem re- 

duces to determiningthe function f(y) (each for each section z) possessing properties noted, 

for which 
So (5)+ min, I, (5) > C, 

&(z)=4Y_/(y)dy. 
4? 

(2.3) 

10 (z)=-$- 
s 
P(Y) dy 

0 0 

Ci=+(max(+,+)-1) 

In a number of cases the optimal shape of the section is a rectangle. For instance, let 

a beam not be reinforced and let there be no lower bounds on the shape of the section. We 

assume that the function fo (y). o,<y < y, solves the problem (2.3) in a certain section z , 
and we consider in addition, a rectangle with sides parallel to the y, z axes which is sym- 

metric relative to these axes. The altitude of this rectangle is 21' (z) and the width is 21, 

where 1 is determined from the condition 1 = 31, (~)(4?(5))-r. The moments of intertia relative 

to the neutral axis of the rectangle and the figure detemlined by the function fo(y) hereare 

equal. Because of the condition f,,(y),<r(s), the area of the rectangle k(s)) does not exceed 

S,(z) defined by the function fo(y). Consequently, in the case considered the optimal shape 

of the section is a rectangle. Even in the general case we shall see the optimal shape of 

the section among rectangles. It is here natural to consider that the main material in each 

section of the reinforcement is enclosed by the main material, i.e., 

S>%, Y>Y, (2.4) 

This means that the problem (2.3) reduces to minimizing the product yz under the con- 
straints (2.4) and the condition 4~232 SC,, where C, is defined in (2.3). We denote the 

altitude of the optimal rectangle by 2~0, and the width by 2~0. It is convenient to intro- 
duce the new variable s = yz. The formulated problem takes the following fomlinthevariables 

s, z 
s--t Din, s 2 max [s, (z), s2 (z), ZYJ, z 2 z. (2.5) 

s1 (z) = + 2 Ia (zE,-’ - 1) z-2 

s* (2) = _g _+_ I, (g - 1) z-2 
0 

Let us note that the optimal value sg = y,zO also satisfies the equation 

SO = zyF max Is, (z), s1 (z), zY,I (2.6) 

Let us introduce the numbers h,,. :.p h, whose meaning is clear from Fig.2. The root h, 
is here the intersection of the curves s1 and sl, which always exists and is unique. The 
unique root 72, also always exists. It can be verified that 

(2.7) 
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Finally, hg and h, axe two positive roots of the cubic equation s,(z) == Y,z; t.hey may 
coincide, and can also not exist. Investigation of (2.51 and (2.61 shows tnat the SO~I.C?WISCJ 
variants are possible depending on the parameters of the problem: 

1) Let either h, <h, <z, < h, or lag <It, Q h, and j&L <: z,,. Then 

In aLI the remaining cases (for instance, if h,<k, and zo<hs, if h,>h,, etc.)tktere 
will be 

20 -I- max (z,, h2), Y4 _= Y, 

Therefore, the optimal shape of the main material is a rectangle which can have either 
the minimal possible width or minimal altitude depending on the parameters of the problem. 

3. Optimal section shape for large values of the moment iW@b Let us find 
formulas for the numbers hi as &f-t 31. Because of (2.7), we have 

h,,-+O as M--a) (3.L) 

Let us study the behavior of h,. To do this, because of (2.7) it is sufficienttostudy 
the behavior of PO as M-+m. The nu&er &.is defined as the root:of (2.1) in which the 
quantity &-+O as M-+M~ This means that by using the Lagrange inversion theorem C/5/, 

p.5071, we obtain 

it hence follows that 

Convergence of the series in the right side means that 

There results hence and from (2.71 and (1.10) that 
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(3.2) 

Finally, for sufficiently large Mtwo positive roots hS and hl exist for the cubic equa- 

tion sI (z)= y,z . The greatest of these h, satisfies the following relationship because of 

the Cardano formula 

(3.3) 

The relationships (3.2), (3.3) and (2.7) permit setting up the optimal section shape for 

sufficiently large values of the moment M. Let us present it. Because of (3.1) and (3.2), 

for sufficiently large Mwe will have 

h, < h, <h* (3.4) 

Let us introduce the function 

$3(z) = max (sl (z), sz (z)) = 
1 

s2 (z), 2 < hl 

St(Z), 2 > h1 

We recall that s,(z) decreases monotonically, while ~~(2) decreases monotonically for 

Z>hhg. Because of (3.41, the function S,(Z) therefore also decreases monotonically. On the 

basis of (2.6) we consequently conclude that the optimal value is s0 = mar (y,h,. yahl). However, 

hz<hh, (in the opposite case, there would be hl>h* because of the decrease in the function 

S*(Z), which contradicts (3.4) ). Hence, for sufficiently large Mthe optimal value is s0 = h,V,. 

This means that for large M 

zo =h,, yo = Y, (3.5) 

The dependence of the optimal altitude 20 on the moment M is here given by (3.3). It is 

seen from the relationship (3.5) that for sufficiently large moments Mthe optimal shape is 

independent of the material age. However, that critical value of the moment ,\fo, starting 

with which the optimal section shape is given by (3.5), is already dependent on the material 

age, where MO diminishes as the age increases. 

A graph of the dependence of M, on P is constructed numerically in Fig.3 for an aging 
function of the form 

(3.6) 

4 
for the following values of +z$I~ parameters I,= 5.2 m , za= 2 m, 

N,;n2= 2 

-1 
m, C, = 1.0.10-4 WPa , 

a,, = 1.42.10-' M&'a, y= 0.03 days , a, = 1.6.!0' N/m , ao= 1.5.106 , E, = 1.96.105 HPa, E" = 2.54.10' 

MPa. 

The optimal shape of a cantilever reinforced beam loaded by a lumped force at the free 

end has also been obtained numerically (the solid curves 1,2:3 correspond to values of P equal 
to 3,5, and 20 days). The dashed curves 1,2,3 depict the dependence of the altitude of the 
optimal section on the age p for values 12.107, 9.107, and 6.107 Nm of the moment, respectiv- 

ely. 

We note also that 

at&& > 8 (3.7) 

Hence, and from (2.6) there results that the dependence of the optimal transverse section 

shape on the age p(2) will decrease as p increases for a fixed value of the moment M(I). More- 

over, the area of the optimal section will also decrease as P grows. 

Let us prove the formula (3.7). If & > 1, then fro = 1, , i.e., @,/ap = 0. This means 

that for %-> 1 the inequality (3.7) is satisfied. Now, let a,< 1. Then PO< 1 and the fol- 
lowing inequality is valid 

(3.8) 

Indeed, by differentiating and integrating by parts the expression (1.8) for J(B. p) we 

obtain 

Hence, and from the positivity of the integral in (1.8) it is seen that 
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It follows from the properties of the function v(p) that i/~(p) and q'(p) are monotonically in- 
creasing functions, while the limit of (P'(~)equals zero as p-~rn. Consequently, Y (p) is d 
monotonically increasing function and 

;iE *(PI = iwa-~ ii. 10) 

If B-t@(p)<O, then (3.8) is satisfied by virtue of (3.91. Now, let B+~(P)>(~. We 
rewrite (3.9) in the following equivalent foml: 

@naJ (BY P)& = sigdlJ(P,p) - J1(B, P)I (3.11) 

Let us fix p. We assume that there exists such 
prove that for any P> PO 

Let us assume the opposite. Let p1 be the first age greater than t'o for which J(fi* PI) *.~ J,(ti, 

t 

an age PO that J {@, pO) > JI(& pu). We 

PO). We examine the segment IpO, PJ. Since J(j%,po)&J((8,pI), then because of the differentiabrl- 
ity of the function (1.8) with respect to p, there exists a Ps E (PO, P,) such that S.r(f% PZV 

ap,, 0. Then on the basis of (3.11) there will be J@, pdBJI@, PP). From the properties of 
q(P) there results that Ji(@,p) is continuous and decreases monotonically in P. Hence, it 
follows ~(~,p~)<~,(~,~~) from the preceding inequality which contradicts the definition of PI 
since Pz <PI. Therefore, the assumption about the existence of p,is false. The relationship 
(3.12) is proved. 

On the basis of (3.10) we have 

At the same time, from (1.8) there results the inequality 

f (87 P) <Y (P)& 

This means that for any E>O there exists a ps>pO such that for p>p3 there will be 

J (6, p) <y i- e. Setting e J,(B, PO) - 4 > 0, we obtain 

J 6, 6)) <q i- V, iB> ~0) - q) r^: J, (fi, poj, p > ps 
This inequality contradicts (3.12). Hence, the assumption about the existence of PO is 

fal!X. This means that for all p there will be J(@,p)<J1(&p). Hence, (3.8) follows from 

(3.11). 
Now, let us consider the solution fill of (2.1) as a function of the age, i.e., &, = pa(p). 

We write the equality 

"$-~@&44) = + F&P) i&+&, * y + $-F (8, PI IB_@. [p) 

By the definition of pa we have F(&(p),p) =i& from (2.1), i.e., 

Taking (1.8) into account, we have (a/dp)F@, p)< 0 because of (3.8). Hence, @a (P)@P> 
0 is necessary to achieve the equality written above. Formula (3.7) is set up_ From the 

preceding there results that rfp, P)<J,(pl f) and 

lim J fB, 9) =iz $I (B, PI = ~2 
P--= 

We hence obtain the estimate 

Q < J (B, P) < IB +tlt (P)]" 

These estimates are the more exact, the greater the p. Estimates for pa, follow from 

these inequalities and (2.1) : 
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which are convenient for large pas well as for large moments when & is Small. 
For an aging function of the form (3.6) we have from (1.8) 

The integral in this formula is a degenerate Schltimilch hypergeometric function. In this 
case the inequality (3.7) can be set up directly by integrating the expression for J (09 P) by 
parts. 

The authors are grateful to N. Kh. Arutiunian for discussing the results obtained. 
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